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ABSTRACT 
We call E ~ 10,1 }~ projective if for some countable A c_ ~ there is an E A c [0,1 }A 
such that E = E A x {0,1} ~\A and EA is a projective subset of the Cantor set 
10,1 }A. We construct a model where Haar measure on 103 } t has no projective 
lifting (and in particular no Baire lifting) for any ~ _> ~. 

§1. Introduction 

The von Neumann-Maharam lifting theorem states that if  (X,~;,/z) is a complete 

probability space, thert there is a lifting p for #, i.e., a Boolean homomorphism 

O : ~ ~ E such that p(E)  = p(F)  whenever #(EAF)  = 0, and # ( o ( E ) A E )  = 0 for 

all E , F  E ~ (see [M], or IF, Theorem 4.4]). The following consistency result of 

Mokobodzki is relevant if (X,r., #) is not complete. 

TrIEOREM IF, Theorem 4.6]. I f 2  ~° = ~1 and (X,E, tt)/s any probability space 

with [r.[ _< ~2, then there is a lifting for  l~. 

On the other hand, Shelah has shown in IS] that 2 ~° ( ,(Bo,,#o,) (the usual Borel 
measure on 2~: see notation in §2) consistently does not have a lifting. We gener- 

alize this result by showing that consistently (2~,EK,#~) has no lifting for any r, 
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where r~ is the collection of measurable projective subsets of {0,1 1", as defined in 

the abstract and in §2. 

§2. Notation 

(a) Fn(A,B) = [p :p is a function, dom(p) is a finite subset of A, ran(p) c_ B}. 

(b) For s E Fn(A,2),  let [S]A = [g E 2 A :S C_ g}. 

(C) 63A is the o-algebra of subsets of 2 A generated by the sets [S]A, where s E 

Fn(A,2) (i.e., 63.4 consists of the Baire subsets of 2"4). 

(d) /~A is the unique probability measure on 2 A such that dom(#A) = 63A and 

#A ([S]A) = 2 -jsl for s E Fn(A,2).  The completion of #A is denoted by/2A, its do- 

main by ~A. 

(e) When A ___ B, let 7r~ : 2 s -~ 2 A be the projection map given by 7rff(g) = g [ A 

for g E 2 s. Let 63s = [(~rff)-l(E) : E E 63A }, i.e., 63s is the a-algebra of subsets 

of  2 s generated by the sets Is]s,  for s E Fn(A,2).  

(f) For each infinite set A and each one-to-one map g: o~ --, A, define g* : 2 A 

2 ~ by g*(h) = h .  g. Also let g : P ( 2  ~) --, P(2  A) be given by g(E)  = (g*) - l (E) .  

Let I;~ be the algebra of measurable projective subsets of 2 ~ (see [Je] for the basic 

facts about projective sets). Let ~,4 = [g(E)  : (E E E~ and g : o~ --, A is one-to- 

one}, which we shall call the algebra of  measurable projective subsets of 2 A. Let 

rg = I ( r f f ) - ~ ( E ) : E  ~ r~AI. 

(g) If  63 is a subalgebra of 63A then p : 63 ~ d~A is a lifting for  ~A with respect 

to 63 (or simply a lifting for  #A if 63 = 63A) if 

(i) p is a Boolean homomorphism, 

(ii) VEE 63, #A(EAp(E))  = O, 

(iii) (¥E,  F E 63)(#A(EAF) = 0 = p (E)  = p(F)) .  

If p"63 c_ r~A, then we call p a projective lifting for #A with respect to 63. 

(h) We code elements of ~o, by subsets of o~ (any reasonable coding method will 

do), and let C~ denote the set of such codes. For c E C,o, we write eval(c) for the 

corresponding element of E~. 

§3. Innocuous iterations 

We build our model using a forcing technique called innocuous iteration which 

was developed by the second author in [Ju], to which we refer the reader for a de- 

tailed presentation of the technique. To make this paper as self-contained as pos- 

sible, we reproduce here the basic properties of innocuous iterations. 

3.1. DEFINITIONS. (i) If P is a partial order, Po - P and ~ is any class, then 

Po <<a) P means that 
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(1) vp, q E Po, p & q in Po = p t q in P, and 

(2) VD _ Po, if D is predense in P0 and D E ~ then D is predense in P. 

(Thus Po <<v P means that Po is completely embedded in P.) 

(ii) A partial order P is harmless if P satisfies the c.c.c, and for every countable 

Po c_ p there is a countable PI such that Po c_ p~ <<v P- 

(iii) Let r = oJ2. (The definition of innocuous iterations of length r > ~o2 is more 

complicated: see [Ju 2.3] and also 5.7 below.) Let (<P~)as~,(Q~)~<~) be a finite 

support d-stage iteration of forcing notions, and let S = {a < r :  c f (a )  = 031 }.  For 

a < r we will write I[-a instead of I~-1,,. If G c_ p~ is generic over V, we will write 

Ga for G rl Pa and Va for V[ Gal.  

We will say that P~ is innocuous if 

(1) For all o~ E r \S ,  Qa = Fn(~o,2), and 

(2) For all a E S, Qa has underlying set oJl and there is a function fa  : ~01 ~ a ,  

increasing, continuous and cofinal, as well as a club Ca c_ oJ~ N limits such 

that for all 6 E Ca 

I[-a "Q~ 0 6 E v,f~)", and I~-~ "Qa 17 ~i <<vs~(6~ Q~". 

In the remainder of this section let ((Pa)a_<~,(Q)~<,) be an innocuous iteration. 

3.2. LEM~-A [Ju 2.6]. P, satisfies the c.c.c. 

3.3. LEI~n_A [Ju 2.7]. I f  O is a sufficiently large regular cardinal, N < H(O) and 

S, (fa)a~S, ( Ca)a~S, ((Pa),~_<~, (Q),~<~) are all elements o f  N, then P~ f) N<<vP~. 

3.4. COROLLARY [Ju 2.5]. P~ is harmless. 

3.5. LEMMA [Ju 2.9]. I f  oL C ~\S,  then 

II-a "P~/Pa is isomorphic to an innocuous iteration". 

3.6. LEma_A [Ju 5.1(a)]. Let n E w\  10} and let ¢(a~ . . . . .  ak) be a Y~-formula 

with all parameters shown. I f  Po and P I are both everywhere uncountable harm- 

less forcing notions and al . . . . .  ak are reals in the ground model, then 

I~-1,0 4'(~1 . . . . .  ~k) ~ It-p, ~(~1 . . . . .  ~k). 

(P is everywhere uncountable i f  P i p  does not have a countable dense subset for  

any p E P.) 

§4. Preliminary iemmas 

4.1. LEMMA. I f  p : 65K~ ~ is a lifting for  l~K then there is an A c_ r such that 

[AI _< 2 ~° ando"(B~ c_ ~ .  
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PROOF. Using the fact that each member of  X;. factors through a countable set 

of  coordinates, represent A as U~<~I A . ,  where IA~] < 2 ~° and p"(B~ c ~. 
- -  _ _  A ~ +  1 

for each a.  • 

4.2. COROLLARY. I f  I~. has no projective lifting for  K <_ 2 s°, then for  every r 

there is no projective lifting for  I~.. • 

4.3. LEMMA. I f L  E r~+× andg E 2 x then (r~+x)" (L I"1 (2" x [gl)) E r~. Also, 

i f  A , B  c_ 2" and A x 2 x, B x 2 × are separated by some set L E g,+x, then A , B  are 

separated by (Try+X)" (L N (2" x [gl)) E ~ , f o r  any g E 2 x. • 

4.4. COROLLARY. I f  p : (B ~ r-2 +x is a projective lifting for/~,+x with respect to 

a subalgebra (B ~ (B2 +× and p can be extended to aprojective lifting for/~,+x with 

respect to the algebra generated by (B tO [El for  some E E (B2 +x, then there is 

such an extension # which satisfies ~(E)  E g~+×. 

Paoor .  Extend p to a lifting for #,+x with respect to the algebra generated by 

U {E} and denote this extension also by p. Then p (E)  separates A and B where 

A = [ p ( X ) : X E  (B, # . + x ( X \ E )  = 0}, 

B = [ p ( X ) : X E  (B, # . + x ( x n  E)  = 0 1 .  

Since O"(B c E~+x, an application of  4.3 with L = o(E)  yields a projective set 

S E r.~ +x which is the section of  o (E)  at some (any) g E 2 x and such that A ~ S, 

B O S = 0. Since #,+x(EAo(E)) = 0, by Fubini's Theorem we may choose g E 2 x 

so that g,+x(SAE) = 0. Take ~ (E)  = S. • 

The following properties of  the functions g*,g associated with a one-to-one 

function g : o~ ~ ~ (see §2, (f)) will be useful: 

4.5. LEM~'~A. (a) g* is continuous. 

--* ~r~mg) is Boolean homomorphism which is measure-preserving 

with respect to the measures #~ on its domain and #x on its range. • 

§5. No projective liftings for the Haar measure on {0,1 }" 

5.1. THEOREM. Con(ZFC) -~ Con(ZFC + 2 so = ~2 dr VK ~t r does not have a 

projective lifting). 

PROOF. Assume V = L, and let K = w 2 .  The desired model will be produced by 

a K-stage innocuous forcing iteration. Hence V~ IF 2 s° = 1%. By 4.2 we need only 

ensure that none of  ~,~, #,~l, and ~,~2 has a projective lifting in VK. 
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Let ~ E [60,601,602}. Since PK satisfies the c.c.c., if I[-~ ",4 c_ ~, has size go", then 

there is a B E [~,]so such that IFK "/i  c_ ~". It follows that if IF~ "S E r~×", then 

there are a one-to-one function g and a name S' such that 

Ik~ ",~' E Eran(g), E 2;,~, and S = ~(S ' ) " .  

If II-~ "a : 6~x -~ r.× is a projective lifting for/zx", then for each ~ such that 

IF~ "t~ E t~o codes an element of 63,~", 

and for each one-to-one g:  ¢0 --, h we can find a one-to-one h : ~ -~ 3~ and a name 

d such that 

1[-, "d  E C~ and p(~(eval(t~))) =/~(evai(d))".  

Pick one such pair (d, h) for each pair (~,g) and write p ((t~,g)) = (d, h).  Take 

the names t~, d to be nice names of the form U~e,o {t~} x A~, where A~ c_ p~ is a 
countable antichain. 

For ot < r, write ~ = min{o~,h}, and ~ = I(c,g) :c is a nice P,~-name for a 

code of a projective subset of 2 ~ and g : ¢o ~ _a is one-to-one}. By CH, I~,~ ] <_ l~l 
for every o~ < K. 

Let C~ denote a club ~ K such that p" (~  ___ ~ whenever a E Cp and cf(ct) = o~1. 

Let S~, S,~, S,~ 2 be three pairwise disjoint stationary subsets of  {a < r :  

cf(o0 = ¢o11. For each h ~ 1o~,o~,o~21, fix a O~2(Sx)-sequence (b,, :or ~ S×) where 
p~: ~--, ~ .  

We will construct P~ in such a way that when ot ~ S× and 

I1-~ "p~ is a projective lifting for/~_~", 

then Q~ adds an open Baire set X~ _c 2 -~ such that 

(*) II-P~+l×W(~.2 ) "p~ cannot be extended to a lifting for #~ with respect to 

any subalgebra of  6~_~ which includes ((B_~) v~ U {X,} ". 

We now sketch a proof that such an iteration indeed yields 5.1. Suppose not and 

fix h, b and p such that p ll-, "b is a projective lifting for #×". Pick o~ ~ Sx t3 Cp 

such that p l~x = Px. 

5.2. CLAM. I~-,, "b~ is a projective lifting for/~_~". 

PROOF. Notice that every pair ((d,g),b,~((d,g))) is already present at some 

stage/~ < ot such that cf(/~) ~ ¢0~. In V~, both P~/Pa and P , /Pa  are everywhere 

uncountable harmless forcing notions by 3.5. Now the claim follows from the ob- 

servation that the property of being a projective lifting can be expressed as a con- 
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junction of  uncountably many formulas (of the form 'p(2-~\E) = 2-~\p(E)' ,  

' p (E  U F) = p ( E )  U p ( F ) ' ,  ' #~(EAp(E) )  = 0', ' /~(EAF)  = 0 = p ( E )  = p ( F ) '  

for Baire sets E,F) ,  every one of which is, by 3.6, absolute between V~ and V~. A 

more detailed proof can be found in [Ju §6]. • 

It follows that at stage a of  the construction we chose Q~, and . ~  so that 

(*) holds. Since h is a name for a lifting, there is a P~-name I ? such that p IF~ 

"h (.,~'~) = I ?''. By 4.4, this means there is a P~-name d for a code of a projective 

set and a one-to-one g : w -~ a_ such that 

(**) p l[-~ "h~ can be extended to a projective lifting for tt_~ 

with respect to the subalgebra of (B_~ generated by 

((B_~) v~ U {2(~,1 by letting h~(~'~) = ~(eval(d))". 

Since P, /P~+I is everywhere uncountable and harmless (i.e., this is true in 

V~+I), and since the property of being a projective lifting is absolute as in the 

proof  of 5.2, (**) contradicts (*). (This argument is given in gross detail in 

[Ju §6].) 

Now fix k E 10),0)1,~021 and a E Sx so that Ik, "h~ is a projective lifting for/z_~". 

In the remainder of this paper we will show how to choose Q~, 276 such that (*) 

holds. 

Let G~ be a generic subset of P~. Until further notice we work in V~ = V[G, ] .  

Let p = val(h~, G~). Then p is a projective lifting f o r / ~ .  In V find a countable 
infinite D ___ _a such that p ([s]~) E r.~ for each s E Fn(D,2). Fix in Van ordering 

of D into type o~ and let < denote the induced lexicographical ordering on 2 D. Call 

the eventually constant sequences in 2 ° rational numbers. 

For x E 2 °,  define rx E 2 -~ as follows: rx(~) = x(~) if ~ E D, rx(~) = 0 if ~ E 

otkD. For A c_ 2 D, let rA = A × 2 -~\D. 

5.3. MAIN LEMNOS. There exists a continuous increasing funct ion f :  oJ~ ~ o~ 

and there is a club C c_ o~l fq limits, and fo r  every ~1 < o~l there is a countable forc- 

ing notion Q(~) with underlying set o~.~ so that Q = O~<~1 Q(~) adds an open 

Baire set ) (  c_ 2 -~ and the following conditions hold: 

(i) Wl E C U (~o= n successors), Q(7/) E Vs(~) and Q(T/) <<Vs~ ) Q. 

(ii) For each Q x Fn (o~1,2)-name x fo r  a code o f  a projective subset o f  2 ~- and 

f o r  each (p, r) E Q x Fn(oJ1,2), there is a cofinal set T c_ o~ 1 so that f o r  all ~1 E T 

there are an open Baire set U c_ 2 ~- , an x E 2 ~- and a condition ( p ; r ' )  <<_ (p , r )  in 

Q x Fn(oJI,2) such that 

(a) x , U , p ( U )  E Vft~+l ), and 

(b) either (p ' , r ' )  It-Q(~+I)xF~(~,2) "2 E eval(x) n t ) (u )  and (1 n x = (~" 

or ( p ; r ' )  II-Qt,+l)×Fnt~l,2 ) " 2 ~  b(U) \eval(x) and (1~_ X " .  
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The reader will certainly have guessed at this point that in our construction of 

P~ we will take Q from the Main Lemma for Q~, a club C~ c_ C such that C~ E V 

and o~. 5 = ~5 for every c5 E C~, and an f~ E V which agrees on C~ with f to wit- 

ness innocuousness. Now (*) is almost obvious, except that one has to make 

sure that "[[-Q~/+l)xFn(o~l,2)" can be replaced by "[["~%Fn(oJ1,2)". This can be verified 
,, i_ V,:, ,, in two stages: first notice that by 3.5 and 3.6 the relation "OC~+l)xvn~l,2) 

can be replaced by "~-vs~+11 " In Vf¢~+~), Q looks like a two-stage iter- "O(r/+l)xFn(t~l,2) " 

ation Q(~7 + 1) * R, where R is harmless. It follows now from 3.6 and the fact 

that only a countable fragment of Fn(¢01,2) is needed to compute eval(x) that 

~ [_Vf('q+l) ~' . p c j p f O l + l )  * QxFn(wl,2) "O(~+l)×Fn(wl.2) can be replaced by "~_v:t~+~) ", which is exactly 

what we need for (*). This reasoning is given in greater detail in [Ju §§5,6]. 

PROOF or 5.3. This proof follows closely the argument in [S]. 

For a ~ b, a, b E 2 n, let 

{ x E 2 D : a < x < b } ,  i f a <  b, 

( a , b ) =  { x E 2 n : b < x < a l ,  i f b < a .  

Let g = {a E (2D) ~÷~ :al~o is a monotone sequence of rational numbers such that 

(an,an+l) --¢: 0 for all n, and a~ = lim,_.~a~ is not rational}. 

Given a sequence ( a ~ : (  < ~ -< co~) of elements of $ with pairwise distinct a~'s, 

define a partial order Q((a ~ : ( < n)) as follows: 

p E Q iff 1) = ( Up, hp), where 

(i) Up c_ 2 D is open, ~D(Gp) < 1/2 (the bar denotes closure in the usual topol- 

ogy o n  2 D ) ;  

(ii) hp : Up --, 2; 

(iii) There are n* E ~o, b~ (! <- n*), It (l < n*) such that 0 = bo < bl < . . .  < 

b,*-i < b,* = 1 and I~ c_ (bt, bl+l) and for each / < n either 

(a) It is a rational interval and hp l I  p is constant, or 

(b) (?( < (o)(~n(l)  < ~0) I~ = U~=~(n (aEm,aEm+~) and 

hp ] ~ (a4m+2k,a4m+2k+l) =-- k, for k ~ [0,1] and n(l)  <__ 2m + k < w. 
The partial order is defined by: p < q ¢ *  Up ~_ Uq, hp ~_ hq, Up n Uq = Uq. 

The Q we are going to construct will be isomorphic to Q((a ~ :~ < Wl)) for some 

sequence of a~'s to be chosen. X will be a Q-name for the open set rI?, where 

II- o "I? = U { (a,b)  : (a,b) ~_ 2 ° is a rational interval and ]p ~ d o 

such that (a,b) ~_ Up and h~l (a,b) - 0}". 

(Go is the canonical name for the generic filter over Q.) 

Q(~I) will be a forcing notion with underlying set o~.~ and isomorphic to 
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Q((a ~ : ~ < 71)). This is a purely technical requirement to bring our construction 

into line with the general framework of innocuous iterations. For all practical pur- 

poses we may think of Q(7/) as being Q((a ~ : ~ < 7/)). However, in order to meet 

requirement (i) of the Main Lemma, we need to be sure that if Q((a ~ : ~ < ~1)) E 

V~ for some/3 < or, then also Q(~) E V~. This can be easily arranged by choosing 

an identification of Q(~ + I ) \Q(~ )  with [60.~,c0. (7 + 1)) at the same time and 

in the same intermediate model as a ~. From now on we identify Q(7/) and 
Q((a~ : ~ < 7/)). 

Fix a function 

F:601\101 onto, 601 X 601 X 601 

so that if F(~) = (no,~l, g'), then T/0 < ~. 

Let (X~(n) : ~ < 601) list all pairs (d,g) where c is a Q(~) x Fn(601,2)-name for 

an element of e~ and g:60 ~ g is one-to-one. Also list QO/) x Fn(601,2) as 

<s~(~) : ~" < 601). 

It remains to construct the sequence (a ~ : ~ < 601), the club C, and the func- 

tion f .  

For every rational interval (a,b) c_ 2 o, we pick gt,,.t,), hta.b), c<,,,b) and a 

P~-name dt~,b ) such that r(a ,b)  = 8t~,b)(eval(et~,b))) and/ga((~(a,b),g(a,b)) ) = 

(d(~,b),h(~,b)). 

Pick a function f '  : 601 -* (~, continuous, increasing and cofinal in (~, and choose 

f (0)  _> f '  (0) large enough so that d(~, b) is a Pf. (o) -name for every rational inter- 
val (a,b) c 2 D. 

Limit stages take care of themselves. 

Now suppose Q(~) and f(~/) are given. Let F(~) = (%,~1,~') and let X = 

X,t(~0). If X = (c ,g)  is a Q(~) × Fn(601,2)-name for a member of  E~), then we 

shall write eval(x) instead of  ~(eval(c)).  Let (p*,r*)  = s~-(~0) ~ Q(%) × 

Fn(60~,2). Choose an ordinal 3,, >_f ' (~ + 1),f(~) such that x,Q(~) ~ vv.  

5.4. CLAIM. There is an a" ~ 8 such that 

(i) Q(~/) <<v~, Q(~/+ 1), 
(ii) a ( p ; r ' )  < (p*,r*),  (p ' , r ' )  ~ Q(*I + 1) x Fn(601,2), ak ~ o~ such that 

either (p',r')H-O(,+U×F.(~,2 ) "ra~ ~ eval(x) f3 P(U,,~_k r(a4m+2, a4m+3)) and 

.e~ ~ Um>k "r(a4m+2, a4m+3) 

or (p',r') [bQ(~+l)×Fn(~ol,2) "/'ao~ ~ ~(Um>, r(ag,, ,a~+l)) \eval(x)  and 

Um~ r(ag.,ag.+i) c_ .¢". 

Assuming 5.4, the Main Lemma is proven as fallows: pick a '  as in 5.4 and let 

f ( ~ / +  1) _> % be large enough so that  (~(~ + 1~ ~ Vf~,+ O and cf( fOt  + 1~)) = o~. 
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Finally, we have to choose C. Notice that our construction yields automatically that 

Q(*/) <<r.sc~ Q for all */. What might fail is the condition Q(*/) E Vsc,~ for some 

limit ordinal */. However, Q has a P~-name Q. since P~ satisfies the c.c.c., a stan- 

dard closure argument yields a club Cc_ 001 such that Q N 60.,/E Vftn) for all */E 

C. We choose such a C, and this completes the proof  of  the Main Lemma. 

PROOF OF 5.4. Write ~/instead of  7~. Let K c_ 2 D be a homeomorphic copy of  

the Cantor set (i.e., K --- 2 '~) such that #D(K) >-- 1/2, every open subset of  2 D is 

either disjoint from K or intersects K on a set of  positive measure (i.e., K is self- 
supporting), and 

r K N  ( U  [p(7(a,b))\z(a,b): (a,b) C 2 D is a rational intervall (1 rUp = 6 .  

By definition of  D, we have p(z(a,b)) E r.~ for each rational interval (a,b) c_ 
2 D. Since each p(z(a,b)) is coded in Vft0~ _c W, we may choose K E  V~. 

Let a~ E K be the image under some homeomorphism 2 ~ --, K coded in V~ of  

the Cohen real added by Q~+l = Fn(~0,2). Either rag E p(z(O,a~)), or ra~ E 

p ( r  (a~, 1)), without loss of  generality of  the former. 

In W+2, let (b~ : n E 0o) be a sequence of  rational numbers in 2 D increasing to 

a~ such that (bn,b,+l) =# f3 for all n. In V~+ 3, define (n(l) :! E o~) by 

n ( 0 ) = 0 ,  n ( l + l ) = n ( l ) + e ( l ) ,  lE~o, 

where e E ( ~ \  [0}) ~ is the Cohen real added by Q-~+2 ---- F n ( ~ , ~ \  {0}). 

5.5. REMARKS. (a) ¥b E (O,a~), ra~ E p(z(b,a~)). (If not, choose a rational 

number x E (s, a~). Then ~'a~ E p ( r  (0, x)) \ r (0,x),  contradicting the definition 

of  K.) 

(b) For m < 4, k < o~, l e tA~  = Ul-_k(bnt4t+m~,b~t41+ra+l~). Then {A°:m < 4} 

is a partition of  (bo,a~). Hence aS E p( rA ° )  for some unique ~ < 4. From (a) it 

follows that ra~ E pr (A~)  for all k. 

(c) Suppose we would rather have rag E p(zA °) for some • ~: ~ .  It is an easy 

exercise to show that this can be accomplished by replacing e by an equivalent Co- 

hen real ~, which satisfies ~(i) = e(i + io) for some fixed io ~ ~0 and for all suffi- 

ciently large i, and furthermore we can arrange for any given k that ~[k = elk. 

Now we return to the construction of a ~. First we show that 5.4(ii) will hold for 

some suitable modification of  e as indicated in 5.5(c), if we let at ~ = b~tt~ for ! < o~. 

Tentatively let at ~ = b~to, l < ~0, with the n(l)'s and Q(*/+  1) defined using the 

unmodified e. If 5.4(ii) fails we can modify e to make it hold, as follows: 

Let p~ = ( Up. 13 A~ O A~, h~. 13 0~ 13 1.420, where ix, for i = 0,1, is the func- 

tion with domain X and constant value i, and k is large enough so that pt  is a 
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condition, i.e., Up* fl [bn~4~),a2] = Q and t~D(Up*) < 1/2. Choose (p ' , r ' )  _< 

(pl,r*) <- (p*,r*), (p',r') E Q(~ + 1) x Fn(o~l,2), so that (p',r') decides 

raw E evaI(x) . (If X = (c ,g )  but d is not a Q(~ + 1) x Fn(~0~,2)-name for a 

code of a projective set, then interpret eval(x) as the empty set.) 
4 4  ~ 

If  (p',r')I[-Q(n+l)×Fn(o~l,2) raw E eval(x)" ,  then 

(1) V~ I~-" (p' ,  r')I~Q(~+l)×Vn(wl,2 ) 44Tao, *" E eval (x)"  ". 

Now do m ( r ' )  __/3 for some infinite ~ < oJ~. So (1) can be rewritten 

(2) V~I[-"(P',r')I[-Q(,+I)xFnO.2) " *" ~'aw E eval(x) holds in an extension 

by an everywhere uncountable 

harmless forcing notion .... 

Since Q(7/+ 1) x Fn(~,2) E W+3, and since, by 3.5, V~ is an extension of  W+3 

by an everywhere uncountable harmless forcing notion, (2) entails 

(3) VT+ 3 Ik"(p',r')[]-Q(r/+l)xFn(~3,2) 4, *rt za~ E eval(x) holds in an extension 

by an everywhere uncountable 

harmless forcing notion .... 

By 3.6, 

(4) Vv+a I[- . . . .  r . . . . . . .  ' ~p, ~ W'Q(~+I)×Fn(wI,2 ) Ta w ~ eval(x) .... . 

Now (4) means that for some eo E Fn(w,w\  [0}), 

(5) Vv+2 Ik ,,eo I~_Q,+2 ,,,.~, r,X it- ,, -~ ...... •./J, ! ,, Q(o+l)xFn( to l ,2)  "/'aoj G eval(x) 

By 5.5(c), we can replace e by an equivalent Cohen real (over Vv+2) which 

we shall also denote by e, maintaining eo c_ e, and so that za~ E o(~A~). Now 

(p' ,  r ' ) ,Q(~  + 1) satisfy the first clause of  5.4(ii). 

In the case where (p', r')I[-Q(r/+l) ×Fn(wl,2) 44ra~ ~' ~ eval(x) ", proceed in a similar 

fashion to modify e so that the second clause of 5.4(ii) will hold. 

From now on, e (and a ~, and Q(o + 1)) are fixed. There remains to prove 

5.4(i). We shall prove a somewhat stronger statement: 

(i) + If V + is a model of a sufficiently powerful fragment of  ZFC such that 

Q(~),  K E  V +, a~ corresponds to a Cohen real over V +, and e is 

Fn(o~,o~\{01)-generic over V [a~], then Q(~) <<v + Q(~ + l) .  

In (i) +, we do not require that V + is a subset of  Vs. 

Let HC_ Q(~) be predense, H E  V +, and f ixp  E Q(~ + 1). We must show that 

p is compatible with some member of  H. Without loss of generality p ~ Q(~), so 
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there are q E Q(~),  1(0) E w, and rational numbers Co, Cj such that 0 < Co < a~ < 

Cl < 1, bn(4l(O))_ 1 < e 0 < bn(4l(O)), Uq N [Co,¢1] = O, Up = Uq U A~ (°) U At2 (°), and 

hp = h e U 0A/(O) U lA/z(o). 

5.6. SUBCLAIM. I f  r E Q(~),/-)c_ Q(~) is dense, and ( bo, bl ) c_ 2 D is an open 

interval disjoint f r o m  U~, then J = (do,dx) f) K f) 0 { 0~ : rl E f t ,  rl <- r] is no- 

where dense in (do, dl ) M K. 

PROOF. Since J is closed in (do, d~) N K, if it is somewhere dense, then there 

is an interval (ao,al) c_ (do,d1) such that Q :/: (ao,a~) f) K c_ j .  Since K is self- 

supporting, ~o((ao,al)  f) K) = e > 0. Take rE --< r such that (Jr 2 f) (ao,a~) = 9 ,  

and #o(U~z) > (1/2) - (¢/2).  Since/-) is dense, there is an r~ ~/-) ,  r~ _< r~. Then 

#D(U~) f) (ao,a~) < e/2, and hence #D(A) > e/2, where A = (ao,a~) ~ K\Ur~. 

Returning to the proof  of (i) ÷, l e t / 4  = {r G Q(~) : ( ]q  G H ) r  <_ ql} .  It suffices 

to show that p is compatible with some r G / t .  For each k > ~(4l(0)) let 

Tk = [t E Q(~) :  Ut is the union of finitely many intervals whose endpoints 

are from {bt: t i (4/(0))  _< l _< k} and #o(Uq U Ut) < 1/2}. 

So Tk is finite and q U t E Q(n) ,  q U t ___ q and a~ ~ Ut, for each t E Tk. For 

each k and t E Tk\Ut<~ Tl define 

• It = (bk ,c l )  f 'IKCI N [ & , : r l  E / - I &  rl < q U  t ] .  

Since/-) is dense, the subclaim assures us that Jt is nowhere dense in (b~, cl) f) 

K. By the choice of  V ÷ we have K, Q(~) E V ÷, and hence also 17t, Jt E V ÷. Since 

a~ corresponds to a Cohen real over V ÷, we have a~ f~ Jr  It follows that for each 

k > h(41(0)) and each t E Tk\Ut<k TI, there is an r t E / - ) such  that r t < q U t and 

&,. 
In + ' V [a,o], there are functions g : U  {Tk:k  > h(41(0))] ~ w and G:  o~ -o w such 

that [bg(t),a~] N Ur, = 9 ,  ~D(bg(o,a~) < (1/2) -- # (U r ) ,  G ( k )  = m a x l g ( t )  : 

t E  Tk]. 

Since e is Fn(~0, o~ \ [0 })-generic over V ÷ [ a~" ], there are arbitrarily large 1 for 

which G(h (41 + I)) < h (41 + 1) + e(4l  + 1) = ~ (41 + 2). Choose such an l _  l(0). 

Let k = t~ (41 + 1), t = ( U  t, ht), where Ut = Up fq [bn(4l(O)), bk], ht = h,,I U,. Then 

t E TkkUl<k TI and we have r t E if-l, r t <_ q U t. Also, [b~(k),a~] f) Urt = 0 and 

hence [bn(4/+2), a~] ('1 Urt = Q. Thus p and r e are compatible, and this proves (i) ÷. 

We have now proven 5.4, 5.3 and 5.1. • • • 
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5.7. REMARK. The proof of 5.1 shows in fact that if r is any regular cardinal 

not the successor of a cardinal of  countable cofinality, then 

Con(ZFC)  =* C o n ( Z F C  + 2 ~° = x + (V~,) (ttx has no projective lifting)). 

The definition of innocuous iterations of  length )~2  contains an additional 

condition (see [Ju, 2.3(b3)]) which is omitted here for the sake of making the ar- 

gument more transparent. However, the reader familiar with [Ju] will have no dif- 

ficulty in verifying that the statement (i) + in the proof of 5.4 implies that our 

iteration will satisfy this extra condition. 

A similar and somewhat easier argument gives 

Con(ZFC)  ~ C o n ( Z F C  + (v)~) (there is no projective lifting for 

the algebra of Baire subsets of  2 x 

modulo the ideal of meager sets)). 

The options for the size of the continuum are the same as before. 
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