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ABSTRACT
We call E € {0,1}* projective if for some countable A C « there is an E4 < {0,1}*
such that E = E; x {0,1)*™ and E, is a projective subset of the Cantor set
{0,1}. We construct a model where Haar measure on {0,1}* has no projective
lifting (and in particular no Baire lifting) for any « = .

§1. Introduction

The von Neumann-Maharam lifting theorem states that if (X, L, u) is a complete
probability space, then there is a lifting p for u, i.e., a Boolean homomorphism
p:X - I such that p(E) = p(F) whenever u(EAF) =0, and u(p(E)AE) =0 for
all E,F € L (see [M], or [F, Theorem 4.4]). The following consistency result of
Mokobodzki is relevant if (X,L, p) is not complete.

TueoreM [F, Theorem 4.6]. If 2% = R, and (X,L,p) is any probability space
with |L| < R,, then there is a lifting for p.

On the other hand, Shelah has shown in [S] that (2¢,8,, u,,) (the usual Borel
measure on 2“: see notation in §2) consistently does not have a lifting. We gener-
alize this result by showing that consistently (2%,£Z,,«,) has no lifting for any «,
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where L, is the collection of measurable projective subsets of {0,1}*, as defined in
the abstract and in §2.

§2. Notation

(a) Fn(A4,B) ={p:pis a function, dom( p) is a finite subset of 4, ran(p) € BJ.

(b) For s € Fn(A4,2), let [s]y, = {g€24:5CS g].

(c) ®, is the o-algebra of subsets of 2 generated by the sets [s],, where s €
Fn(A,2) (i.e., ®, consists of the Baire subsets of 24).

(d) p4 is the unique probability measure on 2 such that dom(u,) = B, and
pa([5)4) = 27'¢! for s € Fn(A,2). The completion of u4 is denoted by fi4, its do-
main by ®,.

(6) When A4 C B, let 7§ : 2% - 24 be the projection map given by 7£(g) = g| A
for g € 28. Let ®2 = ((x2)"1(E):E € B4}, i.e., BE is the o-algebra of subsets
of 2% generated by the sets [s]z, for s € Fn(A4,2).

(f) For each infinite set 4 and each one-to-one map g:w — A, define g*:24 >
29 by g*(h) = hog. Also let §: P(2¢) - P(24) be given by g(E) = (g*) ' (E).
Let £, be the algebra of measurable projective subsets of 2 (see [Je] for the basic
facts about projective sets). Let Ly = {Z(E):(E € X, and g:w — A is one-to-
one}, which we shall call the algebra of measurable projective subsets of 24, Let
L% = (xf)(E):E € L4}.

(g) If ® is a subalgebra of @, then p: ® - ® 4 is a lifting for p, with respect
to ® (or simply a lifting for u, if & = ®,) if

(i) p is a Boolean homomorphism,
(i) VEE€ ®, uq(EAp(E)) =0,
(iii) (VE,F € ®)(us(EAF) =0= p(E) = p(F)).
If p”® < E,, then we call p a projective lifting for u, with respect to .

(h) We code elements of L, by subsets of « (any reasonable coding method will
do), and let €, denote the set of such codes. For ¢ € C,,, we write eval(c) for the
corresponding element of I .

§3. Innocuous iterations

We build our model using a forcing technique called innocuous iteration which
was developed by the second author in [Ju], to which we refer the reader for a de-
tailed presentation of the technique. To make this paper as self-contained as pos-
sible, we reproduce here the basic properties of innocuous iterations.

3.1. DerinrTioNs. (i) If P is a partial order, Py € P and D is any class, then
P, <5 P means that
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(1) vp,g€Py,p LginPy=p L qin P, and
(2) vD S P, if D is predense in Py and D € D then D is predense in P.
(Thus Py < P means that P, is completely embedded in P.)

(ii) A partial order P is harmless if P satisfies the c.c.c. and for every countable
P, < P there is a countable P, such that P, € P, «; P.

(iii) Let x = w,. (The definition of innocuous iterations of length « > w, is more
complicated: see [Ju 2.3] and also 5.7 below.) Let (P << Q0 <.y be a finite
support x-stage iteration of forcing notions, and let S = {a < x: cf(a) = w,}. For
a < « we will write Il instead of IFp_. If G € P, is generic over V, we will write
G, for GNP, and V, for V[G,].

We will say that P, is innocuous if

(1) For all a € «\S, Q, = Fn(w,2), and

(2) For all « € S, Q, has underlying set w; and there is a function f, : w; » a,

increasing, continuous and cofinal, as well as a club C, € w; N limits such
that forall 6 € C,

e “QuNd € V" and Ik, “Q. N8 <y, Qo
In the remainder of this section let {P,p<,,{Qdo<.) be an innocuous iteration.
3.2. LEMMA [Ju 2.6]. P, satisfies the c.c.c.

3.3. LemMA [Ju 2.7]. If 0 is a sufficiently large regular cardinal, N < H(6) and
S, {fdaesr (Codacss EPDa=er (O)o<,) are all elements of N, then P, NN < P,.

3.4. CoROLLARY [Ju 2.5}. P, is harmless.
3.5. LEMMA [Ju 2.9]. If a € k\S, then
Ik, “P./P,, is isomorphic to an innocuous iteration”.

3.6. LeMMA [Ju 5.1(a)]. Let n € w\{0) and let ¢(a,,...,a;) be a L}-formula
with all parameters shown. If P, and P, are both everywhere uncountable harm-
less forcing notions and a,, . . . ,a, are reals in the ground model, then

”_P0¢'(éla cees ) ‘=’"‘P,¢(‘31, ey lg).
(P is everywhere uncountable {f P | p does not have a countable dense subset for
any p€P.)
§4. Preliminary lemmas

4.1. LemMA. If p:®, - L, is a lifting for p, then there is an A < « such that
|A| =2%and p"®, S LY.
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Proor. Using the fact that each member of L, factors through a countable set
of coordinates, represent A as U, 4., where |4,| < 2% and p"®5 S L
for each «. [ |

4.2. CoroLLARY. If u, has no projective lifting for x < 2%°, then for every «
there is no projective lifting for p,. |

4.3.LeMmA. IfL €L, and g € 2" then ()" (L N (2% X {g))) € L,. Also,
if A,B< 2and A x 2, B x 2" are separated by some set L €L,,,, then A,B are
separated by (xX)" (L N (2“ X {g})) €L, for any g € 2™ ]

4.4. COROLLARY. If p:® — L™ is a projective lifting for p,.\ with respect to
a subalgebra ®& < ®*** and p can be extended to a projective lifting for p,., with
respect to the algebra generated by ® U {E) for some E € ®%*, then there is
such an extension § which satisfies p(E) € T,

Proor. Extend p to a lifting for u,,, with respect to the algebra generated by
® U {E} and denote this extension also by p. Then p(E) separates A and B where

A= [p(X): X E B, p\(X\E) =0},
B=(p(X):XEB®, pn(XNE)=0).

Since p”® < L**, an application of 4.3 with L = p(E) yields a projective set
S € T*** which is the section of p (E) at some (any) g € 2* and such that 4 S,
BN S =0. Since .\ (EAp(E)) = 0, by Fubini’s Theorem we may choose g € 2*
so that pu,,\(SAE) = 0. Take g(E) = S. =

The following properties of the functions g*, g associated with a one-to-one
function g:w — A (see §2, (f)) will be useful:

4.5. LeMMa. (a) g* is continuous.
(b) g| Lo, E}an(g) is Boolean homomorphism which is measure-preserving
with respect to the measures p,, on its domain and p,, on its range. |

§5. No projective liftings for the Haar measure on {0,1}*

5.1. THEOREM. Con(ZFC) — Con(ZFC + 2% = &, + v« u, does not have a
projective lifting).

Proor. Assume V = L, and let k = w,. The desired model will be produced by
a x-stage innocuous forcing iteration. Hence V, I 2% = &,. By 4.2 we need only
ensure that none of u,, u,,, and u,, has a projective lifting in V,.
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Let A € {w,w;,w,}. Since P, satisfies the c.c.c., if I, “A < X has size Ro”, then
there is a B € [\]*0 such that I, “4 € B”. It follows that if I, “S € L,”, then
there are a one-to-one function g and a name S’ such that

I “S" € Ehne)» ' € L., and $ = £(S")”.
If I, “p: B, — L, is a projective lifting for u,”, then for each ¢ such that
Ik “¢ € C, codes an element of &,

and for each one-to-one g:w — A\ we can find a one-to-one %:w — A and a name
d such that

I “d € @, and p(g(eval(¢))) = h(eval(d))”.

Pick one such pair {(d, h) for each pair {¢,g) and write 5 ({¢,g)) = (d, h). Take
the names ¢, d to be nice names of the form U, ¢, {71} X 4, where A, S P, is a
countable antichain.

For a < «, write & = min{a,\}, and €, = {{¢,g) : ¢ is a nice P -name for a
code of a projective subset of 2* and g: w — a is one-to-one}. By CH, |C,| < K,
for every a < «.

Let C, denote a club < « such that "€, < €, whenever « € C; and cf(a) = w;.

Let S,, S.,» S., be three pairwise disjoint stationary subsets of {a < «:
cf(a) = w,}. For each A € {w,w;,w,), fix a 0,,(S,)-sequence (o, : o € S)\) where
Pt CL o €.

We will construct P, in such a way that when a € S, and

ks “pe is a projective lifting for pu,”,
then Q, adds an open Baire set X, € 22 such that

(*) e, xFn(w;,2) “Po cannot be extended to a lifting for u, with respect to
any subalgebra of ®, which includes ((Bg)"u Ui{X,}”.

We now sketch a proof that such an iteration indeed yields 5.1. Suppose not and
fix A, and p such that pi-, “p is a projective lifting for u,”. Pick @ € §, N C;
such that p| €, = p,.

5.2. CLam. [k, “p, is a projective lifting for p,”.
Proor. Notice that every pair (¢, g),0,(¢,g))) is already present at some
stage 8 < a such that cf(8) # w,. In Vj, both P,/P; and P, /P, are everywhere

uncountable harmless forcing notions by 3.5. Now the claim follows from the ob-
servation that the property of being a projective lifting can be expressed as a con-
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junction of uncountably many formulas (of the form ‘o (22\E) = 2°\p(E)’,
P(EUF) =p(E)Up(F)’, ‘pa (EAp(E)) = 0, ‘uu (EAF) =0 = p(E) = p(F)’
for Baire sets E, F), every one of which is, by 3.6, absolute between V, and V,. A
more detailed proof can be found in [Ju §6]. |

It follows that at stage « of the construction we chose Q, and X, so that
(*) holds. Since p is a name for a lifting, there is a P,-name Y such that p IF,
“5(X,) = Y” By 4.4, this means there is a P,-name d for a code of a projective
set and a one-to-one g:w — ¢ such that

(%) Pl “p, can be extended to a projective lifting for p,
with respect to the subalgebra of ®, generated by
(B,)" U (X, ]} by letting o, (X,) = &(eval(d))”.

Since P,/P,,, is everywhere uncountable and harmless (i.e., this is true in
V,+1), and since the property of being a projective lifting is absolute as in the
proof of 5.2, (**) contradicts (*). (This argument is given in gross detail in
[Ju §6].)

Now fix A € {w,w;,w,} and « € S, so that I, “p, is a projective lifting for p,”.
In the remainder of this paper we will show how to choose Q,, X,, such that (¥)
holds.

Let G, be a generic subset of P,. Until further notice we work in V, = V[G,].
Let p = val(p,,G,). Then p is a projective lifting for u,. In V find a countable
infinite D € a such that p([s],) € L% for each s € Fn(D,2). Fix in ¥ an ordering
of D into type w and let < denote the induced lexicographical ordering on 27. Call
the eventually constant sequences in 22 rational numbers.

For x € 22, define 7x € 2% as follows: 7x(£) = x(§) if § €D, 7x(§) =0if £ €
a\D.For Ac 2P let 74 = A x 222,

5.3. MaN LeMMmA. There exists a continuous increasing function f:w; - «o
and there is a club C € w, N limits, and for every n < w, there is a countable forc-
ing notion Q(n) with underlying set w-y so that Q =U,,, Q(n) adds an open
Baire set X < 22 and the following conditions hold:

(i) vn € CU (w, N successors), Q(n) € Vs, and Q(n) Ly Q-

(ii) For each Q X Fn(w;,2)-name x for a code of a projective subset of 2¢ and
Joreach (p,r) € Q X Fn(w,,2), there is a cofinal set T € w, so that foralln € T
there are an open Baire set U < 22, an x € 2% and a condition (p’,r') < (p,r) in
Q x Fn(w,2) such that

@ x,U,p(U) € Vy(y+1), and
(b) either (p',r") lFQen+1yxFniwy,2y “X € eval(x) N s(yandUNX ="
or  (Dr') FouenxFa(en2 “% € p(U)\eval(x) and U € X”.
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The reader will certainly have guessed at this point that in our construction of
P, we will take Q from the Main Lemma for Q,, aclub C, € Csuchthat C, e V
and w-6 = & for every 6 € C,, and an f, € V which agrees on C, with f to wit-
ness innocuousness. Now (*) is almost obvious, except that one has to make
sure that “Ih‘,’f;,,ﬁ,xpmhz, » can be replaced by “IFfign(a,,2)”- This can be verified
in two stages: first notice that by 3.5 and 3.6 the relation “IFG(,41)xn(w;.2)”
can be replaced by “Il-gf(‘;,':‘,’)xpn(whz)”. In Vj3+1), Q looks like a two-stage iter-
ation Q(n + 1) * R, where R is harmless. It follows now from 3.6 and the fact
that only a countable fragment of Fn(w,,2) is needed to compute eval(x) that
“Il-g(‘;,'f,’)xpn (wy.2) can be replaced by “IF,‘Q’;;;}:"H) + OxFn(w.2) » Which is exactly
what we need for (*). This reasoning is given in greater detail in [Ju §§5,6].

Proor oF 5.3. This proof follows closely the argument in [S].
Fora#b, a,be 2P, let

(xe2P:a<x<b}, ifa<h,
(a,b) =
(x€2P:b<x<a), ifb<a.

Let § = {ae (2°)“*':a | w is a monotone sequence of rational numbers such that
(a,,a,,,) # @ for all n, and a, = lim, ., 4, is not rational].

Given a sequence {a%: £ < 5 < w,) of elements of $ with pairwise distinct a®’s,
define a partial order Q({a¢: ¢ < 7)) as follows:

pEQiff p=(U,h,), where

(i) U, < 2Pis open, pp( Up) < 1/2 (the bar denotes closure in the usual topol-
ogy on 2P);
(i) h,:U, > 2;
(iii) There are n* € w, by (I=n*), [ (I<n*)suchthat 0 = py < b; <-+-<
by»_y < b; =1and I, (b, b,,,) and for each / < n* either
(@) 1, is a rational interval and #, [ I, is constant, or
(b) @ < £0)(An()) <) [;=Un—n(ty (@5, Gimsr) and
By | (8imszks @imeacs1) = k, for k € {0,1) and n(l) <2m + k < w.
The partial order is defined by: p< g & U, 2 U, h,2 h,, U,N U, = U,.
The Q we are going to construct will be isomorphic to Q({a?: ¢ < w,)) for some
sequence of a%’s to be chosen. X will be a Q-name for the open set 7Y, where

kg “Y = U{(a,b): (a,b) S 27 is a rational interval and 3p € Gg
such that (a,b) € U, and &,| (a,b) = 0}”.

(GQ is the canonical name for the generic filter over Q.)
Q(n) will be a forcing notion with underlying set w-n and isomorphic to
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Q((a%: £ < ). This is a purely technical requirement to bring our construction
into line with the general framework of innocuous iterations. For all practical pur-
poses we may think of Q(#) as being Q({a*: ¢ < %)). However, in order to meet
requirement (i) of the Main Lemma, we need to be sure that if Q(a¢:{ <)) €
V3 for some § < a, then also Q(4) € V;. This can be easily arranged by choosing
an identification of Q(% + 1)\Q(y) with [w-9,w- (g + 1)) at the same time and
in the same intermediate model as a”. From now on we identify Q(%) and
Qat: & <n)).

Fix a function

onto

F:o\{0}] —/ w; X w; X

so that if F(£) = (99,1, ), then 7o < £.

Let {x:(7): & < wy) list all pairs (¢, g) where ¢ is a Q(n) X Fn(w,,2)-name for
an element of G, and g:w — o is one-to-one. Also list Q(n) X Fn(w,,2) as
(se(n):§ <o)

It remains to construct the sequence {a‘:£{ < w,), the club C, and the func-
tion f.

For every rational interval (a,b) € 2P, we pick g(4,5)s #(a,5)> C(a,p) and a
P,-name d, 5, such that 7(a,b) = g4 5 (eval(C(s,p))) and pa (a6, 8cap))) =
(d(a,byshia,5))

Pick a function f’ : w, = «, continuous, increasing and cofinal in «, and choose
f(0) = f7(0) large enough so that d(,,,b, is a P, )-name for every rational inter-
val (a,b) < 2°.

Limit stages take care of themselves.

Now suppose Q(n) and f(n) are given. Let F(n) = (n9,7,{) and let x =
X (10). If x = {¢,g) is a Q(9) X Fn(w;,2)-name for a member of £%, then we
shall write eval(x) instead of g(eval(¢)). Let (p*,r*) = s¢(n0) € Q(no) X
Fn(w;,2). Choose an ordinal v, = f'(n + 1), /(1) such that x,Q(n) € V.

5.4. CLamM. There is an a” € 8 such that

() Q) <y, Qly + 1),
) 3(pr') < (p7r"), (24r') € Q(n + 1) X Fn(wy,2), 3k € w such that

either (p',r') FQns 1) xEncus.2) 700 € eval(x) N p(Umsk (@2, @Gimss)) and
XN Unmak T{@dma2:@ims3) = O
or (P FouminxEnqw. 2 “T88 € B (Umek T(@m, adm+1)) \eval(x) and
Uk T(@dms Q3me1) € X7
Assuming 5.4, the Main Lemma is proven as follows: pick @ as in 5.4 and let
S(n + 1) = v, be large enough so that Q{yg + 1) € Vy(,44y and cf(f(n + 1)) = w.
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Finally, we have to choose C. Notice that our construction yields automatically that
Q(n) N7 Q for all n. What might fail is the condition Q(») € V},, for some
limit ordinal . However, Q has a P,-name Q. since P, satisfies the c.c.c., a stan-
dard closure argument yields a club C € w; such that Q Nw-n € Vy,, forall n €
C. We choose such a C, and this completes the proof of the Main Lemma.

PROOF OF 5.4. Write v instead of ,. Let X < 2° be a homeomorphic copy of
the Cantor set (i.e., K = 2¢) such that u,(K) = 1/2, every open subset of 27 is
either disjoint from K or intersects K on a set of positive measure (i.¢., K is self-
supporting), and

KN (U(o(7(a,b))\7(a,b): (a,b) C 27 is a rational interval} N 7U, = Q.

By definition of D, we have p(7(a,b)) € L}, for each rational interval (a,b) S
2P Since each p(7(a, b)) is coded in ¥y, < V,, we may choose K € V,.

Let @] € K be the image under some homeomorphism 2 — K coded in ¥, of
the Cohen real added by Q,,, = Fn(w,2). Either 7a] € p(7(0,al)), or 7a] €
p(r(al, 1)), without loss of generality of the former.

In V,,,, let {(b,: n € w) be a sequence of rational numbers in 2P increasing to
a} such that (b,,b,,) # @ for all n. In V, 3, define (n(/):/ € w) by

n0 =0, nl+)=n)+el), € w,
where e € (w\ {0})* is the Cohen real added by Q,,, = Fn(w,»\ {0}).

5.5. REMARKS. (@) vb € (0,a), 1al € p(7(b,al)). (If not, choose a rational
number x € (s,a?). Then 7a! € p(7(0,x))\1(0,x), contradicting the definition
of K.)

(b) For m < 4, k < w, let A%, =U ok (bparemys Baaremsny)- Then (A% :m < 4)
is a partition of (bg,a). Hence a? € p(7AY) for some unique 7 < 4. From (a) it
follows that 7a € pr(A%) for all k.

(c) Suppose we would rather have ra? € p(7A%) for some 7 # . It is an easy
exercise to show that this can be accomplished by replacing e by an equivalent Co-
hen real €, which satisfies (i) = e(i + i;) for some fixed i, € w and for all suffi-
ciently large /, and furthermore we can arrange for any given k that |k = e|k.

Now we return to the construction of a”. First we show that 5.4(ii) will hold for
some suitable modification of e as indicated in 5.5(c), if we let @ = b,,(;, for I < w.
Tentatively let a/ = by, / < w, with the n(/)’s and Q(n + 1) defined using the
unmodified e. If 5.4(i) fails we can modify e to make it hold, as follows:

Let py = (U, U A§ U Af, by U 045 U 14), where iy, for i = 0,1, is the func-
tion with domain X and constant value i/, and k is large enough so that p, is a
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condition, i.e., U,* N [byar),al] = @ and pp(U,+) < 1/2. Choose (p',r') <
(pi,r*) = (p*,r*), (p,r') € Q(n + 1) X Fn(w;,2), so that (p’,r’) decides
“ral € eval(x)”. (If x = {¢,g) but ¢ is not a Q(n + 1) X Fn(w;,2)-name for a
code of a projective set, then interpret eval(y) as the empty set.)

If (p7r") IFQus+1)xFn(w;,2) “7d] € eval(x)”, then

1) VoAD', 1) a1y xEn(wr,2) “7@0 € eval(x)””.
Now dom(r’) € 8 for some infinite 3 < w;. So (1) can be rewritten

2 Vo lE“(p',r") FQepe1yxFnes,2) “7d. € eval(x) holds in an extension
by an everywhere uncountable
harmless forcing notion” .

Since Q(9 + 1) x Fn(B,2) € V, .3, and since, by 3.5, V, is an extension of V, ,;
by an everywhere uncountable harmless forcing notion, (2) entails

3) Voes lF“(p1r") lFq+1yxEnes,2) “7d2 € eval(x) holds in an extension
by an everywhere uncountable
harmless forcing notion” ”.

By 3.6,

”

)] VissE (0, 1) IhQ+1) xFaqer,2) “7d € eval(x)

Now (4) means that for some e, € Fn(w, w\ {0}),

(5) V—y+2 ”_ “e() "_Q’Y*'Z “ (p’, r') "_Q(n+l)><Fn(w1,2) “ng [ eVal(X)” » ”_

By 5.5(c), we can replace e by an equivalent Cohen real (over V,.,) which
we shall also denote by e, maintaining e, € e, and so that 7a) € p(74%). Now
(p,r'),Q(n + 1) satisfy the first clause of 5.4(ii).

In the case where (p',7") lFqey+1)xFn(w;,2) “7d0 & eval(x)”, proceed in a similar
fashion to modify e so that the second clause of 5.4(i) will hold.

From now on, e (and @”, and Q(% + 1)) are fixed. There remains to prove
5.4(1). We shall prove a somewhat stronger statement:

@)7* If V*is a model of a sufficiently powerful fragment of ZFC such that
Q(n), K € V*, a? corresponds to a Cohen real over V*, and e is
Fn{w,w\ {0})-generic over ¥V *[a?], then Q(n) <+ Q(y + 1).

In (i)*, we do not require that V'* is a subset of V.
Let H < Q(y) be predense, H € V¥, and fix p € Q(n + 1). We must show that
p is compatible with some member of H. Without loss of generality p & Q(), so
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there are ¢ € Q(1), /(0) € w, and rational numbers ¢y, ¢, such that 0 < ¢y < g <
1 < 1, buaioy-1 < €0 < bpaioy, Uy N [co,61]1 = B, U, = U U ACY U 4S9, and
hy,=h, U 0gp0 U 1y0.

5.6. SuscLamm. Ifre Q(y), Hc Q(n) is dense, and (by, by) < 27 is an open
interval disjoint from U,, then J = (do,d) NKNN{T,, :r, € H, r; < r} is no-
where dense in (d,,d;} N K.

Proor. Since Jis closed in (d,, d;) N K, if it is somewhere dense, then there
is an interval (ay,a,) € (dy,d,) such that & # (ay,a,) N K € J. Since K is self-
supporting, pp((ao,a;) N K) = € > 0. Take r, < r such that U,, N (a,,a,) = T,
and pp(U,,) > (1/2) — (e/2). Since H is dense, there is an r; € H, r; < r,. Then
uD((_/,l) M (ag,a;) < €/2, and hence pup(A) > e/2, where A = (ag,a;) N K\ (7,].

|

Returning to the proof of (i)*, let H = {r € Q(n) :(3¢ € H)r < q,}. It suffices
to show that p is compatible with some r € H. For each k > 7(4/(0)) let

T, = {t € Q(n) : U, is the union of finitely many intervals whose endpoints
are from {b;: 7(4/(0)) =l =<k} and pp(U, U U,) < 1/2}.

So T is finite and g U # € Q(n), gV t < g and a & U,, for each ¢ € T}. For
each k and ¢ € T,\U,, T; define

Ji=(b,e) NKNN{U,:rn€eH&r =qUt).

Since A is dense, the subclaim assures us that J, is nowhere dense in (b;,c;) N
K. By the choice of V' * we have K, Q(3) € V'*, and hence also A, J, € V*. Since
a? corresponds to a Cohen real over V', we have a & J,. It follows that for each
k > i1(41(0)) and each ¢ € T,\U,, T}, there is an r, € H such that r, < ¢ U ¢ and
ar¢ U,.

In V*[a?], there are functions g:\J {T;: k > 7(41(0))} - w and G : w — w such
that [Dyqy,a2] N T, = D, pp(by,al) < (172) = p(U,), G(k) = max{g(t):
t€T,}.

Since e is Fn(w,w\ [0})-generic over ¥V *[a}], there are arbitrarily large / for
which G(a(4/+ 1)) < A4l + 1) + e(4!/ + 1) =7(4] + 2). Choose such an /= /(0).
Let k = 7i(4] + 1), t = (U, h;), where U, = U, N [bagroy>bil, b = hp| Us. Then
t € T\U,« T, and we have r, € H, r, < g U t. Also, [bg),al] N U, = & and
hence [ by as42),a01 N U,l = (. Thus p and r, are compatible, and this proves (i)*.
We have now proven 5.4, 5.3 and 5.1. mEn
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5.7. REMARK. The proof of 5.1 shows in fact that if « is any regular cardinal
not the successor of a cardinal of countable cofinality, then

Con(ZFC) = Con(ZFC + 2% = k + (¥A) (uy has no projective lifting)).

The definition of innocuous iterations of length >, contains an additional
condition (see [Ju, 2.3(b3)]) which is omitted here for the sake of making the ar-
gument more transparent. However, the reader familiar with [Ju] will have no dif-
ficulty in verifying that the statement (i)* in the proof of 5.4 implies that our
iteration will satisfy this extra condition.

A similar and somewhat easier argument gives

Con(ZFC) = Con(ZFC + (V\) (there is no projective lifting for
the algebra of Baire subsets of 2*
modulo the ideal of meager sets)).

The options for the size of the continuum are the same as before.
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